An extension of the Beurling-Chen-Hadwin-Shen theorem for noncommutative Hardy spaces associated with finite von Neumann algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kochen-Specker theorem for von Neumann algebras

The Kochen-Specker theorem has been discussed intensely ever since its original proof in 1967. It is one of the central no-go theorems of quantum theory, showing the non-existence of a certain kind of hidden states models. In this paper, we first offer a new, non-combinatorial proof for quantum systems with a type In factor as algebra of observables, including I∞. Afterwards, we give a proof of...

متن کامل

Torsion Theories for Finite Von Neumann Algebras

The study of modules over a finite von Neumann algebra A can be advanced by the use of torsion theories. In this work, some torsion theories for A are presented, compared and studied. In particular, we prove that the torsion theory (T,P) (in which a module is torsion if it is zero-dimensional) is equal to both Lambek and Goldie torsion theories for A. Using torsion theories, we describe the inj...

متن کامل

Embedding Dimensions of Finite von Neumann Algebras

We introduce “embedding dimensions” of a family of generators of a finite von Neumann algebra when the von Neumann algebra can be faithfully embedded into the ultrapower of the hyperfinite II1 factor. These embedding dimensions are von Neumann algebra invariants, i.e., do not depend on the choices of the generators. We also find values of these invariants for some specific von Neumann algebras.

متن کامل

Integer Operators in Finite Von Neumann Algebras

Motivated by the study of spectral properties of self-adjoint operators in the integral group ring of a sofic group, we define and study integer operators. We establish a relation with classical potential theory and in particular the circle of results obtained by M. Fekete and G. Szegö, see [Fek23,FS55,Sze24]. More concretely, we use results by R. Rumely, see [Rum99], on equidistribution of alg...

متن کامل

On stability properties of positive contractions of L-spaces accosiated with finite von Neumann algebras

In the paper we extent the notion of Dobrushin coefficient of ergodicity for positive contractions defined on L-space associated with finite von Neumann algebra, and in terms of this coefficient we prove stability results for L-contractions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2020

ISSN: 1846-3886

DOI: 10.7153/oam-2020-14-49